

Sustainability Assessment tools for Utility Streetworks

Aryan Hojjati, Ian Jefferson, Nicole Metje & Dexter Hunt University of Birmingham

Utility Infrastructure - streetworks

UNIVERSITY OF BATH

UNIVERSITY^{OF} BIRMINGHAM

UKWIR

~£1.5bn direct construction costs
~£5.5bn indirect costs (social and environmental impacts)

(after McMahon et al., 2005)

Utility streetworks and associated costs

- Streetworks operations (utility placement, renewal and maintenance) cost money, damage the environment and disrupt society.
- They also damage adjacent services, and the overlying road structure.

Utility streetworks cost the UK economy ~£7bn per annum

• More than 4 million holes in the UK's roads each year

UKWIR

Costing of utility streetworks

- Vision: to ensure sustainable implementation of streetworks, encompassing: Assessment and Evaluation Methodologies; Rehabilitation
 Scheduling; and Sustainability/Resilience
- True total cost of streetworks = Economic (direct and indirect) + Environmental + Social
- $\begin{array}{l} C_{\text{SUSTAINABILITY}} = C_{\text{ECONOMIC (DIRECT+ INDIRECT)}} + C_{\text{SOCIAL}} + \\ C_{\text{ENVIRONMENTAL}} \end{array}$

Costing of utility streetworks

EPSRC Engineering and Physical Sciences Research Council

UNIVERSITY OF LEEDS

Newcastle University

University

Of Sheffield

Southampton

Methodology

- Stage 1 Assess costs within the context of benefits
- Stage 2 Establish method to determine true total
 - cost of streetworks in short term
 - Economic, Social and Environmental
- Stage 3 Define cost / impact in the long term to assess resilience

Costing of utility streetworks

- Sustainable and resilient engineering solutions for complex and interdependent infrastructures are essential, especially for streetworks with co-located utilities buried underneath our streets.
- This research is creating a sustainability costing model for streetworks to inform decision-making in an environment where competing private and public financial interests interact with peoples' daily lives.

Costing of utility streetworks

- This research incorporates 'futures' scenarios to ensure our actions today deliver long-term benefits, and is establishing a method for assessing **'value' as well as 'cost'** across the full range of environmental, social and economic dimensions to move away from a 'single bottom line' approach to decision-making.
- Requirements
 - Streetworks sustainability assessment framework
 - Economic parameter inputs
 - Social and Environmental parameter inputs
 - Future proofing scenarios for infrastructure investments

Sustainability

For underground space see Hunt et al (2009 a, b, c), For water see Hunt et al, (2010 a, b)

Sustainability assessment tools

Critical Review of Existing Sustainability Assessment Tools (Investigation of more than 40 tools and methods):

- SPeAR (Sustainability Appraisal, LCA based)
- CEEQUAL (Sustainability Rating, Environmentally focused)
- HaISTAR (Sustainability Toolkit, System thinking approach)
- ✓ Modifications are being made to SPeAR and CEEQUAL's indicator systems.

- UKWIR UKWIR
- Preliminary Review of Sustainability Input Parameters (Cost Indicators specific to Utility Streetworks):
- A database for utility streetworks costs (impacts)
- Economic, Social and Environmental Impacts
- Long-term and short-term costs (impacts)

UPDATE

	Indirect Cost + Social Cost			1716086		
Utility Strike (Case Studies 1-16) Cost Ratio	=		=		=	≈ 29
		Direct Repair Cost		59804		

UTILITY STRIKE COST RATIO = 29:1

Example: Assuming you have a strike incident with a **direct cost** of **£1000**, that would mean as a rule of thumb that the **true cost** (direct + indirect + social) is **£29000**, based on the case study findings.

bui d

Generated as part of the iBuild project sponsored by EPSRC

From confusion to management for ST and LT

Thank you.

Any Questions?

